Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Discrimination of Computer Generated and Photographic Images Based on CQWT Quaternion Markov Features

    https://doi.org/10.1142/S0218001419540077Cited by:1 (Source: Crossref)

    In this paper, an effective method based on the color quaternion wavelet transform (CQWT) for image forensics is proposed. Compared to discrete wavelet transform (DWT), the CQWT provides more information, such as the quaternion’s magnitude and phase measures, to discriminate between computer generated (CG) and photographic (PG) images. Meanwhile, we extend the classic Markov features into the quaternion domain to develop the quaternion Markov statistical features for color images. Experimental results show that the proposed scheme can achieve the classification rate of 92.70%, which is 6.89% higher than the classic Markov features.