World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EYE DETECTION USING OPTIMAL WAVELET PACKETS AND RADIAL BASIS FUNCTIONS (RBFs)

    https://doi.org/10.1142/S0218001499000562Cited by:65 (Source: Crossref)

    The eyes are important facial landmarks, both for image normalization due to their relatively constant interocular distance, and for post processing due to the anchoring on model-based schemes. This paper introduces a novel approach for the eye detection task using optimal wavelet packets for eye representation and Radial Basis Functions (RBFs) for subsequent classification ("labeling") of facial areas as eye versus non-eye regions. Entropy minimization is the driving force behind the derivation of optimal wavelet packets. It decreases the degree of data dispersion and it thus facilitates clustering ("prototyping") and capturing the most significant characteristics of the underlying (eye regions) data. Entropy minimization is thus functionally compatible with the first operational stage of the RBF classifier, that of clustering, and this explains the improved RBF performance on eye detection. Our experiments on the eye detection task prove the merit of this approach as they show that eye images compressed using optimal wavelet packets lead to improved and robust performance of the RBF classifier compared to the case where original raw images are used by the RBF classifier.