Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Simulation optimization can be used to solve many complex optimization problems in automation applications such as job scheduling and inventory control. We propose a new framework to perform efficient simulation optimization when simulation models with different fidelity levels are available. The framework consists of two novel methodologies: ordinal transformation (OT) and optimal sampling (OS). The OT methodology uses the low-fidelity simulations to transform the original solution space into an ordinal space that encapsulates useful information from the low-fidelity model. The OS methodology efficiently uses high-fidelity simulations to sample the transformed space in search of the optimal solution. Through theoretical analysis and numerical experiments, we demonstrate the promising performance of the multi-fidelity optimization with ordinal transformation and optimal sampling (MO2TOS) framework.
The eyes are important facial landmarks, both for image normalization due to their relatively constant interocular distance, and for post processing due to the anchoring on model-based schemes. This paper introduces a novel approach for the eye detection task using optimal wavelet packets for eye representation and Radial Basis Functions (RBFs) for subsequent classification ("labeling") of facial areas as eye versus non-eye regions. Entropy minimization is the driving force behind the derivation of optimal wavelet packets. It decreases the degree of data dispersion and it thus facilitates clustering ("prototyping") and capturing the most significant characteristics of the underlying (eye regions) data. Entropy minimization is thus functionally compatible with the first operational stage of the RBF classifier, that of clustering, and this explains the improved RBF performance on eye detection. Our experiments on the eye detection task prove the merit of this approach as they show that eye images compressed using optimal wavelet packets lead to improved and robust performance of the RBF classifier compared to the case where original raw images are used by the RBF classifier.