World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MO2TOS: Multi-Fidelity Optimization with Ordinal Transformation and Optimal Sampling

    https://doi.org/10.1142/S0217595916500172Cited by:68 (Source: Crossref)

    Simulation optimization can be used to solve many complex optimization problems in automation applications such as job scheduling and inventory control. We propose a new framework to perform efficient simulation optimization when simulation models with different fidelity levels are available. The framework consists of two novel methodologies: ordinal transformation (OT) and optimal sampling (OS). The OT methodology uses the low-fidelity simulations to transform the original solution space into an ordinal space that encapsulates useful information from the low-fidelity model. The OS methodology efficiently uses high-fidelity simulations to sample the transformed space in search of the optimal solution. Through theoretical analysis and numerical experiments, we demonstrate the promising performance of the multi-fidelity optimization with ordinal transformation and optimal sampling (MO2TOS) framework.