World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimal Parallel Machine Allocation Problem in IC Packaging Using IC-PSO: An Empirical Study

    https://doi.org/10.1142/S0217595917500348Cited by:4 (Source: Crossref)

    We model and apply a stochastic-simulation-based methodology to optimize the machine allocation of a flexible flow shop (FFS) dedicated to integrated circuit (IC) packaging. This contrasts with most previous research on non-deterministic FFS problems wherein stochastic simulation is mostly used to estimate throughput, cycle time, delay cost, or some other measure(s) in order to compare the performances of already-existing heuristic-based algorithms. The methodology applied in this research, called progressive simulation metamodeling for IC Packaging (IC-PSO), while rooted in the traditional metamodeling technique known as Response Surface Methodology (RSM), contrasts with RSM in that it is equipped with well-designed mechanisms to ensure an ever-increasing solution quality in an attempt to achieve the desirable optimality. The computational efficiency that IC-PSO affords IC packaging companies is demonstrated via a numerical study. Meanwhile, an empirical study based on real data was conducted to validate the viability of the proposed methodology in real settings.