CRITICAL CHOICES IN A SYSTEM FOR OPTIMIZED DESIGN OF ARBITRARY WAVEFORM TRANSFORMERS
Abstract
Traditionally, magnetic component design has been based on power frequency transformers with sinusoidal excitation. However, the movement towards higher density integrated circuits means that reductions in the size of magnetic components must be achieved by operating at higher frequencies, mainly through nonsinusoidal switching circuits. As this trend continues, computing tools are required to carry out designs of magnetic components that also allow evaluation of the high frequency losses in these components. A computer design package is described here that implements a robust transformer design methodology allowing customizable transformer geometries. The concept of a critical frequency is a vital part of this methodology. In addition, the winding choice at high frequencies is optimized to give the most accurate results for the best possible speed. This paper includes a description of the software design processes used and describes the main aspects that were incorporated into the system.