A TIED-MIXTURE 2D HMM FACIAL IMAGE RETRIEVAL SYSTEM
Abstract
In this paper, the effect of mixture tying on a second-order 2D Hidden Markov Model (HMM) is studied as applied to the face recognition problem. While tying HMM parameters is a well-known solution in the case of insufficient training data that leads to nonrobust estimation, it is used here to improve the overall performance in the small model case where the resolution in the observation space is the main problem.
The fully-tied-mixture 2D HMM-based face recognition system is applied to the facial database of AT&T and the facial database of Georgia Institute of Technology. The performance of the proposed 2D HMM tied-mixture system is studied and the expected improvement is confirmed.