World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EARLY BUFFER PLANNING WITH CONGESTION CONTROL USING BUFFER REQUIREMENT MAP

    https://doi.org/10.1142/S0218126610006657Cited by:0 (Source: Crossref)

    Buffer insertion plays an important role in circuit performance and signal integrity especially in deep submicron technologies. The stage at which buffers are inserted in a design has a large impact on the design quality. Early buffer insertion may cause misestimation due to unknown cell locations whereas buffer insertion after placement may not be very effective because the cell locations have been fixed and buffer resources may be distributed inappropriately.

    In this paper, a buffer planning algorithm for floor-placement design flow is presented. This algorithm creates a map of buffer requirements in various regions of the design at the floorplanning stage and then enforces the detailed placer to distribute white spaces with respect to the estimated buffer requirement map.

    Experimental results show that the proposed method improves the performance of attempted circuits with fewer buffers. Furthermore, results show that congestion, routability and design convergence are improved and the auxiliary loops are avoided in the proposed design flow. Our analyses and experiments show that the CPU time overhead of this algorithm is very small.

    This paper was recommended by Regional Editor Krishna Shenai.