World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A POWER AND AREA EFFICIENT 65 nm CMOS DELAY-LINE ADC FOR ON-CHIP VOLTAGE SENSING

    https://doi.org/10.1142/S0218126613400148Cited by:3 (Source: Crossref)

    This paper presents a 4-bit windowed delay-line analog-to-digital converter (ADC) implemented in 65 nm CMOS technology for VLSI dynamic voltage scaling power management applications. Good linearity is achieved in the proposed power and area efficient ADC without the use of resistors for compensation. The circuit performance was analyzed theoretically and verified experimentally. The measured DNL is within ±0.25 LSB and INL ±0.15 LSB. It occupies an area of 0.009 mm2. With a sampling rate of 4 MHz, the ADC consumes 14 μW with an ENOB of 4.1 and voltage sensing range from 0.87 V to 1.32 V.