World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An ANN Model to Estimate the Impact of Tea Process Parameters on Tea Quality

    https://doi.org/10.1142/S021812661550139XCited by:2 (Source: Crossref)

    Present study deals with the development of an artificial neural network (ANN)-based technique for tea quality quantification by monitoring fermentation and drying condition of the tea processing stages. An RS485 network-based instrumentation system has been developed and implemented for data collection for these two stages. Three calibrated sensor nodes are installed in the fermentation room due to its larger floor area to collect temperature and relative humidity (RH). Dryer inlet temperature is recorded using a calibrated thermocouple-based sensor node. From seven input parameters and target quality data obtained from tea taster, the ANN model has been developed to find the correlation between the process condition and the tea quality. From the correlation study, more than 90% classification rate is obtained from the model. The model is also validated with some independent data showing more than 60% correlation. Error in terms of root mean square error (RMSE) is about 0.17. This model will be helpful for improvement of tea quality.

    This paper was recommended by Regional Editor Tongquan Wei.