World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Direct Torque Control of Induction Motor Using Enhanced Firefly Algorithm — ANFIS

    https://doi.org/10.1142/S021812661750092XCited by:3 (Source: Crossref)

    In this paper, the hybrid direct torque control (DTC) technique is proposed for controlling the speed of the induction motor (IM). The hybrid technique is the combination of an enhanced firefly algorithm (FA) and the adaptive neuro fuzzy inference system (ANFIS) technique. The performance of the FA is improved by updating the randomized parameter. Here, the genetic algorithm (GA) is utilized for updating the parameter and improved the performance of the FA. Initially, the actual torque and the change of toque are applied to the input of the enhanced FA and form the electromagnetic torque as a dataset. The output of the enhanced FA is given to the input of the ANFIS which is determined from the output of interference system. The dynamic behavior of the IM is analyzed in terms of the parameters such as the speed, torque, flux, etc. Based on the parameters, the motor speed is controlled by utilizing the proposed technique. Then the output of the ANFIS is translated into the stator voltage which is given to the input of the support vector machine (SVM). After that, the control signal is generated for controlling the speed of the IM. The proposed hybrid technique is implemented in the Matlab/Simulink platform. The performance analysis of the proposed method is demonstrated and contrasted with the existing techniques such as without controller, particle swarm optimization (PSO)-based ANFIS and FA-ANFIS controller.

    This paper was recommended by Regional Editor Piero Malcovati.