Modeling and Performance Analysis of MLGNR Interconnects
Abstract
In this work, we have presented the temperature-dependent analytical time domain model for top-contact multilayer graphene nanoribbon (TC-MLGNR) and side-contact multilayer graphene nanoribbon (SC-MLGNR) interconnects for 16nm technology node. Using this analytical model, the effective mean free path (MFP) is calculated for different temperatures and then the resistance of GNR interconnect is calculated. The lower resistance of MLGNR is one of the important factors to reduce interconnect delay. The equivalent capacitance for TC-MLGNR is also calculated. It is observed that the performance of graphene interconnects seriously deteriorates due to the presence of the interlayer capacitance. The presence of this interlayer capacitance increases the equivalent capacitance which is the dominant factor that inhibits the performance of TC-MLGNR interconnects. Further, the delay ratio between copper and TC-MLGNR for different interconnect lengths and for three different temperatures (233K, 300K, 378K) is calculated. It is observed that for longer interconnect lengths, the improvement in delay in TC-MLGNR is less as compared to traditional copper-based interconnect at low temperature. Further, power delay product (PDP) of copper and TC-MLGNR for different interconnect lengths and for three different temperatures is also calculated. It is shown that TC-MLGNR interconnects have better PDP than copper interconnects. The crosstalk analysis is performed to estimate the noise and overshoot/undershoot in TC-MLGNR and SC-MLGNR interconnects. It is shown that SC-MLGNR interconnect has better performance as far as the crosstalk is concerned as compared to that of Cu and TC-MLGNR interconnects.
This paper was recommended by Regional Editor Zoran Stamenkovic.