Decision-Based Marginal Diffusion for Salt-and-Pepper Noise Removal in Color Images
Abstract
Salt-and-pepper noise suppression for vector-valued images usually employs vector median filtering, total variation L1 model, diffusion methods and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and are suitable only for images with low intensity noise. In this paper, a new method, as an important preprocessing step in cyber-physical systems, is presented to suppress salt-and-pepper noise that can overcomes this limitation. This method first detects the corrupted pixels and then restores them using channel-wise anisotropic diffusion. The means is twofold. On the one hand, the marginal approach is used to perform noise suppression separately in each channel because the contaminative pixel components are of independent distribution. On the other hand, a decision-based anisotropic diffusion method is applied to each channel to restores them. The anisotropic diffusion is an energy-dissipating process with time, and dependent on geometric analysis of shape of the energy surface. Simulation results indicate that the proposed method for impulsive noise removal achieves the state-of-the-arts results.
This paper was recommended by Regional Editor Tongquan Wei.