World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Low Power Transposed Form 4-Tap Finite Impulse Response Filter Using Power Efficient Multiply Accumulate Unit

    https://doi.org/10.1142/S0218126622500165Cited by:2 (Source: Crossref)

    Finite impulse response (FIR) filters find wide application in signal processing applications on account of the stability and linear phase response of the filter. These digital filters are used in applications, like biomedical engineering, wireless communication, image processing, speech processing, digital audio and video processing. Low power design of FIR filter is one of the major constraints that researchers are trying hard to achieve. This paper presents the implementation of a novel power efficient design of a 4-tap 16-bit FIR filter using a modified Vedic multiplier (MVM) and a modified Han Carlson adder (MHCA). The units are coded using Verilog hardware description language and simulated using Xilinx Vivado Design Suite 2015.2. The filter is synthesized for the 7-series Artix field programmable gate array with xc7a100tcsg324-1 as the target device. The proposed filter design showed an improvement of a maximum of 57.44% and a minimum of 2.44% in the power consumption compared to the existing models.

    This paper was recommended by Regional Editor Emre Salman.