World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

VC-YOLO: Towards Real-Time Object Detection in Aerial Images

    https://doi.org/10.1142/S021812662250147XCited by:6 (Source: Crossref)

    Object detection for aerial images is a crucial and challenging task in the field of computer vision. Previous CNN-based methods face problems related to extreme variation of object scales and the complex background in aerial images, which vary significantly from natural scenes. On the other hand, a great many of existing detectors highly rely on computational performance and cannot handle real-time tasks. To address this problems, we propose a lightweight real-time object detection network which is named VC-YOLO. In the backbone part, we introduce a receptive field extended backbone with limited number of convolution layers to learn the features and context information of various objects. In the detection part, channel attention module and spatial attention module are used to generate discriminative feature representation. To make full use of semantic feature maps in backbone network, we improve the feature pyramid network (FPN) with more lateral connections to reuse the features in each convolution stage. We evaluate VC-YOLO on NWPU VHR-10 and VisDrone benchmark datasets. Experimental results show that VC-YOLO achieves superior detection accuracy with high efficiency compared with the existing methods.

    This paper was recommended by Regional Editor Takuro Sato.