World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Controlling a 4D Chaotic Oscillator with a Quadratic Memductance and its Implementation

    https://doi.org/10.1142/S0218126622502875Cited by:4 (Source: Crossref)

    Following the experimental realization of memristors, researchers have focused on memristor-based circuits. Chaotic circuits can be implemented easily using a memristor due to its nonvolatile and nonlinear behavior. This study presents a memristor-based four-dimensional (4D) chaotic oscillator with a line equilibria. A memristor having quadratic memductance was utilized to implement the proposed chaotic oscillator. The 4D chaotic oscillator with quartic nonlinearity was designed as a result of the quadratic memductance. In terms of communication security, random number generation and image and audio encryption, systems with quartic nonlinearity or that are higher-dimensional are better than systems that are lower-dimensional or possess quadratic/cubic nonlinearity. The performance of the proposed chaotic circuit was investigated according to properties such as phase portraits, Jacobian matrices, equilibrium points, Lyapunov exponents and bifurcation analyses. Furthermore, the proposed system is multistable and its solutions tend to appear as twin attractors when initial conditions approach their equilibria. The Lyapunov-based nonlinear controller was constructed for controlling the proposed system having a line equilibria. The effect of the initial conditions on the controlling indicators was also studied. In conclusion, by using discrete circuit elements, the proposed circuit was constructed, and its experimental results demonstrated a good agreement with the simulation results.

    This paper was recommended by Regional Editor Giuseppe Ferri.