World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Deep Convolutional Neural Network Stacked Ensemble for Malware Threat Classification in Internet of Things

    https://doi.org/10.1142/S0218126622503029Cited by:22 (Source: Crossref)

    Malicious attacks to software applications are on the rise as more people use Internet of things (IoT) devices and high-speed internet. When a software system crash happens caused by malicious action, a malware imaging method can examine the application. In this study, we present a novel malware classification method that captures suspected operations in a variety of discrete size image features, allowing us to identify such IoT device malware families. To decrease deep neural network training time, essential local and global image features are selected using a combined local and global feature descriptor (LBP-GLCM). The classification performance of the proposed deep learning model is improved by combining the predictions of weak learners (CNNs) and using them as knowledge input to a multi-layer perceptron meta learner. This is a neural network ensemble with stacked generalization that is used to improve network generalization ability. The public dataset used for performance evaluation contains 5472 samples from 11 different malware families. In order to compare the proposed methodology to current malware detection systems, we developed a baseline experiment. The proposed approach improved malware classification results to 98.5% accuracy and 98.4% accuracy when using 256×256 and 200×200 image sizes, respectively. Overall, the results showed that the stacked generalization ensemble with multi-step extracting features is a more effective method for classification performance and response time.

    This paper was recommended by Regional Editor Takuro Sato.