World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Improved GPS/INS Integration Based on EKF and AI During GPS Outages

    https://doi.org/10.1142/S021812662450035XCited by:4 (Source: Crossref)

    Inertial navigation system (INS) is often integrated with satellite navigation systems to achieve the required precision at high-speed applications. In global navigation system (GPS)/INS integration systems, GPS outages are unavoidable and a severe challenge. Moreover, because of the usage of low-cost microelectromechanical sensors (MEMS) with noisy outputs, the INS will get diverged during GPS outages, and that is why navigation precision severely decreases in commercial applications. In this paper, we improve GPS/INS integration system during GPS outages using extended Kalman filter (EKF) and artificial intelligence (AI) together. In this integration algorithm, the AI receives the angular rates and specific forces from the inertial measurement unit (IMU) and velocity from the INS at t and t1. Therefore, the AI has positioning and timing data of the INS. While the GPS signals are available, the output of the AI is compared with the GPS increment; so that the AI is trained. During GPS outages, the AI will practically play the GPS role. Thus, it can prevent the divergence of the GPS/INS integration system in GPS-denied environments. Furthermore, we utilize neural networks (NNs) as an AI module in five different types: multi-layer perceptron (MLP) NN, radial basis function (RBF) NN, wavelet NN, support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS). To evaluate the proposed approach, we utilize a real dataset that has been gathered by a mini-airplane. The results demonstrate that the proposed approach outperforms the INS and GPS/INS integration systems with the EKF during GPS outages. Meanwhile, the ANFIS also reached more than 47.77% precision compared to the traditional method.

    This paper was recommended by Regional Editor Tongquan Wei.