World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DISTANCES OF TIME SERIES COMPONENTS BY MEANS OF SYMBOLIC DYNAMICS

    https://doi.org/10.1142/S0218127404009387Cited by:35 (Source: Crossref)

    In this note we describe a simple method for visualizing time-dependent similarities and dissimilarities between the components of a high-dimensional time series. On the base of symbolic dynamics, the time series is turned into a series of matrices whose rows quantify pattern types in the components of the original series. For different scales we introduce distances between the components via the obtained pattern type distributions and approximate them in a one-dimensional manner. The method is illustrated for 19-channel EEG data.