World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EVOKED OSCILLATIONS AND EARLY COMPONENTS OF EVENT-RELATED POTENTIALS: AN ANALYSIS

    https://doi.org/10.1142/S0218127404009417Cited by:21 (Source: Crossref)

    In the present work, we provide new arguments and data indicating that early ERP components are generated at least in part by evoked theta and alpha oscillations. We proceed from the general hypothesis, originally proposed by Erol Basar that ERP's are generated by a superposition of evoked oscillations with different frequencies. Based on findings about event-related desynchronization/synchronization (ERD/ERS), we analyze the following specific hypotheses. If evoked theta and alpha oscillations contribute to the generation of ERP components and if their functional role, type of reactivity and frequency specificity are similar to those of event-related oscillations (measured by ERD/ERS), we expect (i) to see the same functional relationship between frequency and cognitive processes, (ii) the same type of "reactivity" and a (iii) dependency of latency measures of evoked components on IAF. By reviewing respective data, we demonstrate that similar to research about event-related oscillations, evoked alpha reflects attention, whereas evoked theta reflects working memory processes. Furthermore, it was found that individual alpha frequency (IAF) has a significant influence on P1 latency in particular. For a better understanding of these findings, we outline a new theoretical framework. We assume that the P1–N1 complex is generated by an interplay between the synchronous activation of three neuronal network systems, a working memory, attentional, and semantic memory system, each operating with a different frequency, the first in the theta (about 6 Hz), the second in the lower alpha (about 8 Hz) and the third in the upper alpha (about 12 Hz) frequency range. The implications of this theoretical framework are discussed by reviewing research using phase sensitive measures to analyze "local" and "large scale" integration processes between different neural networks.

    Part of the research reported in this paper was supported by the Austrian Science Fund, P-13047.