World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LIMIT CYCLING IN AN OBSERVER-BASED CONTROLLED SYSTEM WITH FRICTION: NUMERICAL ANALYSIS AND EXPERIMENTAL VALIDATION

    https://doi.org/10.1142/S0218127404011156Cited by:13 (Source: Crossref)

    This paper investigates limit cycling behavior of observer-based controlled mechanical systems with friction compensation. The limit cycling is induced by the interaction between friction and friction compensation, which is based on the estimated velocity. The limit cycling phenomenon, which is experimentally observed in a rotating arm manipulator, is analyzed through computational bifurcation analysis. The computed bifurcation diagram confirms that the limit cycles can be eliminated by enlarging observer gains and controller gains at the cost of a steady state error. The numerical results match well with laboratory experiments.