World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NONLINEAR DYNAMICS OF MOVING CURVES AND SURFACES: APPLICATIONS TO PHYSICAL SYSTEMS

    https://doi.org/10.1142/S0218127405012004Cited by:7 (Source: Crossref)

    The subject of moving curves (and surfaces) in three-dimensional space (3-D) is a fascinating topic not only because it represents typical nonlinear dynamical systems in classical mechanics, but also finds important applications in a variety of physical problems in different disciplines. Making use of the underlying geometry, one can very often relate the associated evolution equations to many interesting nonlinear evolution equations, including soliton possessing nonlinear dynamical systems. Typical examples include dynamics of filament vortices in ordinary and superfluids, spin systems, phases in classical optics, various systems encountered in physics of soft matter, etc. Such interrelations between geometric evolution and physical systems have yielded considerable insight into the underlying dynamics. We present a succinct tutorial analysis of these developments in this article, and indicate further directions. We also point out how evolution equations for moving surfaces are often intimately related to soliton equations in higher dimensions.