Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    NONLINEAR DYNAMICS OF MOVING CURVES AND SURFACES: APPLICATIONS TO PHYSICAL SYSTEMS

    The subject of moving curves (and surfaces) in three-dimensional space (3-D) is a fascinating topic not only because it represents typical nonlinear dynamical systems in classical mechanics, but also finds important applications in a variety of physical problems in different disciplines. Making use of the underlying geometry, one can very often relate the associated evolution equations to many interesting nonlinear evolution equations, including soliton possessing nonlinear dynamical systems. Typical examples include dynamics of filament vortices in ordinary and superfluids, spin systems, phases in classical optics, various systems encountered in physics of soft matter, etc. Such interrelations between geometric evolution and physical systems have yielded considerable insight into the underlying dynamics. We present a succinct tutorial analysis of these developments in this article, and indicate further directions. We also point out how evolution equations for moving surfaces are often intimately related to soliton equations in higher dimensions.

  • articleNo Access

    Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space

    In this paper, we relate the evolution equations of the electric field and magnetic field vectors of the polarized light ray traveling in a coiled optical fiber in the ordinary space into the nonlinear Schrödinger’s equation by proposing new kinds of binormal motions and new kinds of Hasimoto functions in addition to commonly known formula of the binormal motion and Hasimoto function. All these operations have been conducted by using the orthonormal frame of Bishop equations that is defined along with the coiled optical fiber. We also propose perturbed solutions of the nonlinear Schrödinger’s evolution equation that governs the propagation of solitons through the electric field (E) and magnetic field (M) vectors. Finally, we provide some numerical simulations to supplement the analytical outcomes.

  • articleNo Access

    Geometric magnetic phase for timelike spherical optical ferromagnetic model

    In this paper, we give some constructions for the applications of optical magnetic Heisenberg spherical ferromagnetic chain of T - timelike magnetic particle by spherical de Sitter frame in de Sitter space. This aim may be concluded by well-known de Sitter frame or a new alternative spherical frame with an optical magnetic spherical Heisenberg ferromagnetic chain. Moreover, we achieve total magnetic phases of T - timelike magnetic particle evolutions. Finally, we obtain some numerical modeling of optical magnetic spherical Heisenberg ferromagnetic flows.