World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

COMPLEX DYNAMICS IN PENDULUM EQUATION WITH PARAMETRIC AND EXTERNAL EXCITATIONS II

    https://doi.org/10.1142/S0218127406016653Cited by:6 (Source: Crossref)

    This paper (II) is a continuation of "Complex dynamics in pendulum equation with parametric and external excitations (I)." By applying second-order averaging method and Melnikov's method, we obtain the criterion of existence of chaos in an averaged system under quasi-periodic perturbation for Ω = nω + ∊ν, n = 1, 2, 4 and cannot prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for Ω = nω + ∊ν, n = 3, 5–15 by Melnikov's method, where ν is not rational to ω. However, we show the occurrence of chaos in the averaged and original systems under quasi-periodic perturbation for Ω = nω + ∊ν, n = 3, 5 by numerical simulation. The numerical simulations, include the bifurcation diagram of fixed points, bifurcation diagrams in three- and two-dimensional spaces, homoclinic bifurcation surface, maximum Lyapunov exponent, phase portraits, Poincaré map, are plotted to illustrate theoretical analysis, and to expose the complex dynamical behaviors, including period-3 orbits in different chaotic regions, interleaving occurrence of chaotic behaviors and quasi-periodic behaviors, a different kind of interior crisis, jumping behavior of quasi-periodic sets, different nice quasi-periodic attractors, nonchaotic attractors and chaotic attractors, coexistence of three quasi-periodic sets, onset of chaos which occurs more than once for a given external frequency or amplitudes, and quasi-periodic route to chaos. We do not find the period-doubling cascade. The dynamical behaviors under quasi-periodic perturbation are different from that of periodic perturbation.