World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXTENDED PHASE DIAGRAM OF THE LORENZ MODEL

    https://doi.org/10.1142/S021812740701883XCited by:27 (Source: Crossref)

    The parameter dependence of the various attractive solutions of the three variable nonlinear Lorenz equations is studied as a function of r, the normalized Rayleigh number, and of σ, the Prandtl number. Previous work, either for fixed σ and all r or along σ ∝ r and , is extended to the entire (r, σ) parameter plane. An onion-like periodic pattern is found which is due to the alternating stability of symmetric and nonsymmetric periodic orbits. This periodic pattern is explained by considering non-trivial limits of large r and σ and thus interpolating between the above mentioned cases. The mathematical analysis uses Airy functions as introduced in previous work, but instead of concentrating on the Lorenz map we analyze the trajectories in full phase space. The periodicity of the Airy function allows to calculate analytically the periodic onion structure in the (r, σ)-plane. Previous observations about sequences of bifurcations are confirmed, and more details regarding their symmetry are reported.