World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Coexisting Attractors in a Physically Extended Lorenz System

    https://doi.org/10.1142/S0218127421300160Cited by:10 (Source: Crossref)

    Coexisting attractors may arise from many different sources such as hidden basins of attraction or peculiarly organized bifurcation structures. By exploiting the regions of mismatched bifurcations between the system and its fixed points, this study investigates coexisting attractors in a six-dimensional extension of the Lorenz system. This six-dimensional extension takes into account additional physical ingredients, namely, rotation and density-affecting scalar, which are not considered in the original Lorenz system. These newly considered physical ingredients can influence the bifurcation structures and thus the system’s characteristics with regard to coexisting attractors. Once the potential regions of coexisting attractors are identified in the parameter spaces, the coexistence of periodic and point attractors and that of two different periodic orbits in addition to the well-known coexistence of chaos and stability are demonstrated through the solution trajectories and attractor basin boundaries.