World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REGULAR AND CHAOTIC DYNAMICS OF THE LORENZ–STENFLO SYSTEM

    https://doi.org/10.1142/S0218127410025466Cited by:23 (Source: Crossref)

    We analytically investigate the dynamics of the generalized Lorenz equations obtained by Stenflo for acoustic gravity waves. By using Descartes' Rule of Signs and Routh–Hurwitz Test, we decide on the stability of the fixed points of the Lorenz–Stenflo system, although without explicit solution of the eigenvalue equation. We determine the precise location where pitchfork and Hopf bifurcation of fixed points occur, as a function of the parameters of the system. Parameter-space plots, Lyapunov exponents, and bifurcation diagrams are used to numerically characterize periodic and chaotic attractors.