World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON ISOCONCENTRATION SURFACES OF THREE-DIMENSIONAL TURING PATTERNS

    https://doi.org/10.1142/S0218127408020355Cited by:5 (Source: Crossref)

    We consider three-dimensional Turing patterns and their isoconcentration surfaces corresponding to the equilibrium concentration of the reaction kinetics. We call these surfaces equilibrium concentration surfaces (EC surfaces). They are the interfaces between the regions of "high" and "low" concentrations in Turing patterns. We give alternate characterizations of EC surfaces by means of two variational principles, one of them being that they are optimal for diffusive transport. Several examples of EC surfaces are considered. Remarkably, they are often very well approximated by certain minimal surfaces. We give a dynamical explanation for the emergence of Scherk's surface in certain cases, a structure that has been observed numerically previously in [De Wit et al., 1997].

    This work was supported by NSF Grant No. IBN-0083653. We acknowledge support from the Center for Applied Mathematics and the Interdisciplinary Center for the Study of Biocomplexity at the University of Notre Dame and the Biocomplexity Institute at Indiana University.