World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A POLYNOMIAL TIME ALGORITHM TO DETERMINE MAXIMAL BALANCED EQUIVALENCE RELATIONS

    https://doi.org/10.1142/S0218127408020367Cited by:20 (Source: Crossref)

    Following Golubitsky, Stewart, and others, we give definitions of networks and input trees. In order to make our work as general as possible, we work with a somewhat extended notion of multiplicity, and introduce the concept of "bunching" of trees. We then define balanced equivalence relations on networks, and a partial ordering on these relations. Previous work has shown that there is a maximal balanced equivalence relation on networks of certain classes: we provide a different style of proof which gives this result for any network. We define two algorithms to determine this relation in practice on a given finite network — one for use with networks with all multiplicities equal, and a second for the more general case. We then provide illustrative examples of each algorithm in use. We show both of these algorithms to be quartic in the size of the given network.