FLUCTUATIONAL ESCAPE FROM CHAOTIC ATTRACTORS IN MULTISTABLE SYSTEMS
Abstract
Recent progress towards an understanding of fluctuational escape from chaotic attractors (CAs) is reviewed and discussed in the contexts of both continuous systems and maps. It is shown that, like the simpler case of escape from a regular attractor, a unique most probable escape path (MPEP) is followed from a CA to the boundary of its basin of attraction. This remains true even where the boundary structure is fractal. The importance of the boundary conditions on the attractor is emphasized. It seems that a generic feature of the escape path is that it passes via certain unstable periodic orbits. The problems still remaining to be solved are identified and considered.