World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPUTATION AND VISUALIZATION OF BIFURCATION SURFACES

    https://doi.org/10.1142/S0218127408021658Cited by:16 (Source: Crossref)

    The localization of critical parameter sets called bifurcations is often a central task of the analysis of a nonlinear dynamical system. Bifurcations of codimension 1 that can be directly observed in nature and experiments form surfaces in three-dimensional parameter spaces. In this paper, we propose an algorithm that combines adaptive triangulation with the theory of complex systems to compute and visualize such bifurcation surfaces in a very efficient way. The visualization can enhance the qualitative understanding of a system. Moreover, it can help to quickly locate more complex bifurcation situations corresponding to bifurcations of higher codimension at the intersections of bifurcation surfaces. Together with the approach of generalized models the proposed algorithm enables us to gain extensive insights in the local and global dynamics not only in one special system but in whole classes of systems. To illustrate this ability we analyze three examples from different fields of science.