World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BIFURCATIONS OF THE GLOBAL STABLE SET OF A PLANAR ENDOMORPHISM NEAR A CUSP SINGULARITY

    https://doi.org/10.1142/S021812740802166XCited by:1 (Source: Crossref)

    The dynamics of a system defined by an endomorphism is essentially different from that of a system defined by a diffeomorphism due to interaction of invariant objects with the so-called critical locus. A planar endomorphism typically folds the phase space along curves J0 where the Jacobian of the map is singular. The critical locus, denoted J1, is the image of J0. It is often only piecewise smooth due to the presence of isolated cusp points that are persistent under perturbation. We investigate what happens when the stable set Ws of a fixed point or periodic orbit interacts with J1 near such a cusp point C1. Our approach is in the spirit of bifurcation theory, and we classify the different unfoldings of the codimension-two singularity where the curve Ws is tangent to J1 exactly at C1. The analysis uses a local normal-form setup that identifies the possible local phase portraits. These local phase portraits give rise to different global manifestations of the behavior as organized by five different global bifurcation diagrams.