World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BIFURCATIONS, AND TEMPORAL AND SPATIAL PATTERNS OF A MODIFIED LOTKA–VOLTERRA MODEL

    https://doi.org/10.1142/S0218127408021671Cited by:32 (Source: Crossref)

    Bazykin proposed a Lotka–Volterra-type ecological model that accounts for simplified territoriality, which neither depends on territory size nor on food availability. In this study, we describe the global dynamics of the Bazykin model using analytical and numerical methods. We specifically focus on the effects of mutual predator interference and the prey carrying capacity since the variability of each could have especially dramatic ecological repercussions. The model displays a broad array of complex dynamics in space and time; for instance, we find the coexistence of a limit cycle and a steady state, and bistability of steady states. We also characterize super- and subcritical Poincaré–Andronov–Hopf bifurcations and a Bogdanov–Takens bifurcation. To illustrate the system's ability to naturally shift from stable to unstable dynamics, we construct bursting solutions, which depend on the slow dynamics of the carrying capacity. We also consider the stabilizing effect of the intraspecies interaction parameter, without which the system only shows either a stable steady state or oscillatory solutions with large amplitudes. We argue that this large amplitude behavior is the source of chaotic behavior reported in systems that use the MacArthur–Rosenzweig model to describe food-chain dynamics. Finally, we find the sufficient conditions in parameter space for Turing patterns and obtain the so-called "back-eye" pattern and localized structures.