World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LOCAL AND GLOBAL BIFURCATIONS IN THREE-DIMENSIONAL, CONTINUOUS, PIECEWISE SMOOTH MAPS

    https://doi.org/10.1142/S0218127411029318Cited by:14 (Source: Crossref)

    In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence of nonsmooth period-doubling, saddle-node, and Neimark–Sacker bifurcations are derived. We show that dangerous border collision bifurcation can also occur in this map. Global bifurcations arise in connection with the occurrence of nonsmooth Neimark–Sacker bifurcation by which a spiral attractor turns into a saddle focus. The global dynamics are systematically explored through the computation of resonance tongues and numerical continuation of mode-locked invariant circles. We demonstrate the transition to chaos through the breakdown of mode-locked torus by degenerate period-doubling bifurcation, homoclinic tangency, etc. We show that in this map a mode-locked torus can be transformed into a quasiperiodic torus if there is no global bifurcation.