World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHAOTIC DETECTOR FOR BPSK SIGNALS IN VERY LOW SNR CONDITIONS

    https://doi.org/10.1142/S0218127412501441Cited by:6 (Source: Crossref)

    Chaotic detection of weak signals based on Duffing oscillator uses the property of sensitive dependence on initial conditions (SDIC). A small signal can cause a transition between the states of the system and thus be detected. Different from the early works, we concentrate on using chaotic oscillator as a detector for BPSK signals in very low signal-to-noise ratio (SNR) conditions. Phase transition identification is the key step of weak signals detection by using Duffing oscillator. In this paper, we expose a novel algorithm to use Teager energy operator (TEO) to identify the phase transition, which is more easily to be calculated than the usually used methods. According to this algorithm, a methodology is proposed for detection for BPSK signals using Duffing oscillator. A powerline carrier communication system is studied as an example to illustrate the bit error performance of the proposed chaotic detector. The simulation results show that the proposed detector works much better than the traditional coherent demodulation in strong background noise, and it can improve the error performance of uncoded BPSK signal approaching the Shannon limit curve. The proposed chaotic detector gives us another way to approach the Shannon limit without using any complex channel code technology.