Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this work, we implement multiplicative noise to the Duffing oscillator with variable coefficients. The stochastic differential equations are solved using the fourth-order Runge–Kutta method with the Box-Müller algorithm and the corresponding integral of motion is obtained. Some numerical experiments are performed and the results show that the integral of motion is highly unaffected by the multiplicative noise.
Numerical simulations have been used to investigate the synchronization behavior of a unidirectionally coupled pair of double-well duffing oscillators (DDOs). The DDOs were simulated in their structurally stable chaotic zone and their state variables were found to completely synchronized. The essential feature of the transition to the synchronous state is shown to correspond to a boundary crisis in which the cross-well chaotic attractor is destroyed.
The Duffing oscillator to combined deterministic and narrow-band random excitation, which is a nonlinear equation, is studied and solved numerically using three numerical methods based on finite difference schemes. Method 1, the well-known Euler method, is an explicit method; Method 2 is an implicit first-order method which does not bring contrived chaos into the solution; and Method 3 is based on two first-order methods which is second-order method and is chaos-free. In a series of numerical experiments, it is seen that the proposed methods have superior stability properties to those of the well-known Euler and fourth-order Runge-Kutta methods to which they are compared. When extended to the numerical solution of Duffing oscillator to combined deterministic and narrow-band random excitation, the developed methods give the correct steady-state solutions compared with the literature.
In view of photoacoustic spectroscopy theory, the relationship between weak photoacoustic signal and gas concentration is described. The studies, on the principle of Duffing oscillator for identifying state transition as well as determining the threshold value, have proven the feasibility of applying the Duffing oscillator in weak signal detection. An improved differential Duffing oscillator is proposed to identify weak signals with any frequency and ameliorate the signal-to-noise ratio. The analytical methods and numerical experiments of the novel model are introduced in detail to confirm its superiority. Then the signal detection system of weak photoacoustic based on differential Duffing oscillator is constructed, it is the first time that the weak signal detection method with differential Duffing oscillator is applied triumphantly in photoacoustic spectroscopy gas monitoring technology.
This paper presents how to apply a newly developed general theory for the global transversality and tangency of flows in n-dimensional nonlinear dynamical systems to a 2-D nonlinear dynamical system (i.e. a periodically forced, damped Duffing oscillator). The global tangency and transversality of the periodic and chaotic motions to the separatrix for such a nonlinear system are discussed to help us understand the complexity of chaos in nonlinear dynamical systems. This paper presents the concept that the global transversality and tangency to the separatrix are independent of the Melnikov function (or the energy increment). Chaos in nonlinear dynamical systems makes the exact energy increment quantity to be chaotic no matter if the nonlinear dynamical systems have separatrices or not. The simple zero of the Melnikov function cannot be used to simply determine the existence of chaos in nonlinear dynamical systems. Through this paper, the expectation is that, from now on, one can use the alternative aspect to look into the complexity of chaos in nonlinear dynamical systems. Therefore, in this paper, the analytical conditions for global transversality and tangency of 2-D nonlinear dynamical systems are presented. The first integral quantity increment (i.e. the energy increment) for a certain time interval is achieved for periodic flows and chaos in the 2-D nonlinear dynamical systems. Under the perturbation assumptions and convergent conditions, the Melnikov function is recovered from the first integral quantity increment. A periodically forced, damped Duffing oscillator with a separatrix is investigated as a sampled problem. The corresponding analytical conditions for the global transversality and tangency to the separatrix are obtained and verified by numerical simulations. The switching planes and the corresponding local and global mappings are defined on the separatrix. The mapping structures are developed for local and global periodic flows passing through the separatrix. The mapping structures of global chaos in the damped Duffing oscillator are also discussed. Bifurcation scenarios of the damped Duffing oscillator are presented through the traditional Poincaré mapping section and the switching planes. The first integral quantity increment (i.e. L-function) is presented to observe the periodicity of flows. In addition, the global tangency of periodic flows in such an oscillator is measured by the G-function and G(1)-function, and is verified by numerical simulations. The first integral quantity increment of periodic flows is zero for their complete periodic cycles. Numerical simulations of chaos in such a Duffing oscillator are carried out through the Poincaré mapping sections. The conservative energy distribution, G-function and L-function along the displacement of Poincaré mapping points are presented to observe the complexity of chaos. The first integral quantity increment (i.e. L-function) of chaotic flows at the Poincaré mapping points is nonzero and chaotic. The switching planes of chaos are presented on the separatrix for a better understanding of the global transversality to the separatrix. The switching point distribution on the separatrix is presented and the switching G-function on the separatrix is given to show the global transversality of chaos on the separatrix. The analytical conditions are obtained from the new theory rather than the Melnikov method. The new conditions for the global transversality and tangency are more accurate and independent of the small parameters.
We study the influence of the shapes of three different external periodic forces on the stochastic resonance phenomenon in multiple potential well systems with Gaussian noise. We consider as external periodic forces the sine wave, the modulus of sine wave and the rectified sine wave. The systems of our interest are two coupled overdamped anharmonic oscillators and the Duffing oscillator. For fixed values of the parameters, when the intensity D of the external noise is varied, the systems with these periodic forces separately are found to exhibit stochastic resonance. Certain similarities and differences are found in the characteristics of these statistical measures such as signal-to-noise ratio (SNR), response amplitude (Q), time series plot, mean residence time τMR in the potential wells and the distribution P of the normalized residence time for these different forces. Especially, the time series plot at the maximum SNR shows an almost periodic switching between the potential wells for the sine force which is not observed for the other two forces. In the noise-induced intermittent dynamics, τMR is the same in different wells for the sine force, whereas it is different in different wells for the other two forces for each value of the noise intensity D. Further, variation of τMR with D, the value of τMR at the resonance and the distribution P show different features for the different types of forces. We present a detailed comparative study and explanation for the similarities and differences observed in the stochastic resonance dynamics.
In this paper is presented a relationship between the synchronization and the topological entropy. We obtain the values for the coupling parameter, in terms of the topological entropy, to achieve synchronization of two unidirectional and bidirectional coupled piecewise linear maps. In addition, we prove a result that relates the synchronizability of two m-modal maps with the synchronizability of two conjugated piecewise linear maps. An application to the unidirectional and bidirectional coupled identical chaotic Duffing equations is given. We discuss the complete synchronization of two identical double-well Duffing oscillators, from the point of view of symbolic dynamics. Working with Poincaré cross-sections and the return maps associated, the synchronization of the two oscillators, in terms of the coupling strength, is characterized.
In this paper, the analytical conditions for the controlled pendulum synchronizing with periodic motions in the Duffing oscillator are developed using the theory of discontinuous dynamical systems. From the analytical conditions, the synchronization invariant domain is obtained. The partial and full synchronizations of the controlled pendulum with periodic motions in the Duffing oscillator are discussed. The control parameter map for the synchronization is achieved from the analytical conditions, and numerical illustrations of the partial and full synchronizations are carried out to illustrate the analytical conditions. This synchronization is different from the controlled Duffing oscillator synchronizing with chaotic motion in the periodically excited pendulum. Because the periodically forced, damped Duffing oscillator possesses periodic and chaotic motions, further investigation on the controlled pendulum synchronizing with complicated periodic and chaotic motions in the Duffing oscillator will be accomplished in sequel.
Chaotic detection of weak signals based on Duffing oscillator uses the property of sensitive dependence on initial conditions (SDIC). A small signal can cause a transition between the states of the system and thus be detected. Different from the early works, we concentrate on using chaotic oscillator as a detector for BPSK signals in very low signal-to-noise ratio (SNR) conditions. Phase transition identification is the key step of weak signals detection by using Duffing oscillator. In this paper, we expose a novel algorithm to use Teager energy operator (TEO) to identify the phase transition, which is more easily to be calculated than the usually used methods. According to this algorithm, a methodology is proposed for detection for BPSK signals using Duffing oscillator. A powerline carrier communication system is studied as an example to illustrate the bit error performance of the proposed chaotic detector. The simulation results show that the proposed detector works much better than the traditional coherent demodulation in strong background noise, and it can improve the error performance of uncoded BPSK signal approaching the Shannon limit curve. The proposed chaotic detector gives us another way to approach the Shannon limit without using any complex channel code technology.
Detecting the state of the Duffing oscillator, a type of well-known chaotic oscillator, deeply affects the accuracy of its application. Considering this, the present paper introduced a novel method for detecting the state of the Duffing oscillator. Binary outputs, simple calculation, high precision and fast response time were the main advantages of the phase space trajectory autocorrelation. Also, this study explained the largest Lyapunov exponent as well as a number of other methods commonly employed in detecting the state of the Duffing oscillator. The precision and effectiveness of the method introduced was compared with other well-known state detection methods such as the 0-1 test and the largest Lyapunov exponent.
Active feedback control is commonly used to attenuate undesired vibrations in vibrating machineries and structures, such as bridges, highways and aircrafts. In this paper, we investigate the primary resonance and 1/3 subharmonic resonance of a harmonically forced Duffing oscillator under fractional nonlinear feedback control. By means of the first order averaging method, slow flow equations governing the modulations of amplitude and phase of the oscillator are obtained. An approximate solution for the steady state periodic response is derived and its stability is determined by the Routh–Hurwitz criterion. We demonstrate that appropriate choices on the control strategies and feedback gains can delay or eliminate the undesired bifurcations and reduce the amplitude peak both of the primary and subharmonic resonances. Analytical results are verified by comparisons with the numerical integration results.
In this paper, we present a new method for chaos generation in nonautonomous impulsive systems. We prove the presence of chaos in the sense of Li–Yorke by implementing chaotic perturbations. An impulsive Duffing oscillator is used to show the effectiveness of our technique, and simulations that support the theoretical results are depicted. Moreover, a procedure to stabilize the unstable periodic solutions is proposed.
In this paper, we show that nonlinear dynamical systems which satisfy the edge of chaos criteria can bifurcate from a stable equilibrium point regime to a chaotic regime by periodic forcing. That is, the edge of chaos criteria can be exploited to engineer a phase transition from ordered to chaotic behavior. The frequency of the periodic forcing can be derived from this criteria. In order to generate a periodic or a chaotic oscillation, we have to tune the amplitude of the periodic forcing. For example, we engineer chaotic oscillations in the generalized Duffing oscillator, the FitzHugh–Nagumo model, the Hodgkin–Huxley model, and the Morris–Lecar model. Although forced oscillators can exhibit chaotic oscillations even if the edge of chaos criteria is not satisfied, our computer simulations show that forced oscillators satisfying the edge of chaos criteria can exhibit highly complex chaotic behaviors, such as folding loci, strong spiral dynamics, or tight compressing dynamics. In order to view these behaviors, we used high-dimensional Poincaré maps and coordinate transformations. We also show that interesting nonlinear dynamical systems can be synthesized by applying the edge of chaos criteria. They are globally stable without forcing, that is, all trajectories converge to an asymptotically-stable equilibrium point. However, if we apply a forcing signal, then the dynamical systems can oscillate chaotically. Furthermore, the average power delivered from the forced signal is not dissipated by chaotic oscillations, but on the contrary, energy can be generated via chaotic oscillations, powered by locally-active circuit elements inside the one-port circuit 𝒩 connected across a current source.
In this paper, the recent and emerging phenomenon of hidden oscillations is observed in a newly implemented memristor-based autonomous Duffing oscillator for the first time. The hidden oscillations are presented and quantified by various statistical measures. The system shows a large number of hidden attractors for a wide range of the system parameters. This study indicates that hidden oscillations can exist not only in piecewise-linear but also in smooth nonlinear circuits and systems. The distribution of Lyapunov exponents and the basin of attraction are explored to understand the nature of the hidden oscillations. We have also discussed the new phenomenon of periodic line invariant. An experimental demonstration is also presented using real time analog circuit.
In this paper, we characterize all the Liouvillian first integrals of a cubic polynomial differential system that contains the van der Pol and the Duffing oscillators. It is also shown that the centers correspond to the Liouville integrable cases.
The long-term mean-field dynamics of coupled underdamped Duffing oscillators driven by an external periodic signal with Gaussian noise is investigated. A Boltzmann-type H-theorem is proved for the associated nonlinear Fokker–Planck equation to ensure that the system can always be relaxed to one of the stationary states as time is long enough. Based on a general framework of the linear response theory, the linear dynamical susceptibility of the system order parameter is explicitly deduced. With the spectral amplification factor as a quantifying index, calculation by the method of moments discloses that both mono-peak and double-peak resonance might appear, and that noise can greatly signify the peak of the resonance curve of the coupled underdamped system as compared with a single-element bistable system. Then, with the input signals taken from laboratory experiments, further observations show that the mean-field coupled stochastic resonance system can amplify the periodic input signal. Also, it reveals that for some driving frequencies, the optimal stochastic resonance parameter and the critical bifurcation parameter have a close relationship. Moreover, it is found that the damping coefficient can also give rise to nontrivial nonmonotonic behaviors of the resonance curve, and the resultant resonant peak attains its maximal height if the noise intensity or the coupling strength takes the critical value. The new findings reveal the role of the order parameter in a coupled system of chaotic oscillators.
The phenomenon of delay-induced resonance implies that in a nonlinear system a time-delay term may be used as an effective enhancer of the oscillations caused by an external forcing maintaining the same frequency. This is possible for the parameters for which the time-delay induces sustained oscillations. Here, we study this type of resonance in the overdamped and underdamped time-delayed Duffing oscillators, and we explore some new features. One of them is the conjugate phenomenon: the oscillations caused by the time-delay may be enhanced by means of the forcing without modifying their frequency. The resonance takes place when the frequency of the oscillations induced by the time-delay matches the ones caused by the forcing and vice versa. This is an interesting result as the nature of both perturbations is different. Even for the parameters for which the time-delay does not induce sustained oscillations, we show that a resonance may appear following a different mechanism.
We analyze the collective dynamics of an ensemble of globally coupled, externally forced, identical mechanical oscillators with cubic nonlinearity. Focus is put on solutions where the ensemble splits into two internally synchronized clusters, as a consequence of the bistability of individual oscillators. The multiplicity of these solutions, induced by the many possible ways of distributing the oscillators between the two clusters, implies that the ensemble can exhibit multistability. As the strength of coupling grows, however, the two-cluster solutions are replaced by a state of full synchronization. By a combination of analytical and numerical techniques, we study the existence and stability of two-cluster solutions. The role of the distribution of oscillators between the clusters and the relative prevalence of the two stable solutions are disclosed.
Neural network models have recently demonstrated impressive prediction performance in complex systems where chaos and unpredictability appear. In spite of the research efforts carried out on predicting future trajectories or improving their accuracy compared to numerical methods, not sufficient work has been done on using deep learning techniques in which the unpredictability can be characterized of chaotic systems or give a general view of the global unpredictability of a system. In this work, we propose a novel approach based on deep learning techniques to measure the fractal dimension of the basins of attraction of the Duffing oscillator for a variety of parameters. As a consequence, we provide an algorithm capable of predicting fractal dimension measures as accurately as the box-counting algorithm, but with a computation speed about ten times faster.
In this paper, we investigate the chaotic dynamics of Cubic Quintic Septic Duffing oscillator. The conditions of the system parameters for the existence of fixed points and the stability of the undamped free Cubic Quintic Septic Duffing oscillator are obtained. Multiple scales method is employed to determine the various resonance states of the system through frequency-amplitude response curves. Using linear damping, septic coefficient, excitation amplitude and excitation frequency as control parameters, the bifurcation diagrams are drawn numerically and the results are confirmed using phase space trajectories and their corresponding Poincaré sections. The influence of septic nonlinearity, linear damping and excitation amplitude in controlling the chaotic behavior of the system is also investigated.