Stochastic Bifurcations and Noise-Induced Chaos in a Dynamic Prey–Predator Plankton System
Abstract
We consider the stochastic Truscott–Brindley dynamical model of the interacting populations of prey and predator. We study a new phenomenon of the stochastic cycle splitting. In a zone of Canard cycles, using the stochastic sensitivity function technique, we find a critical value of the parameter corresponding to the supersensitive cycle. In the neighborhood of this critical value, a comparative parametrical analysis of the phenomenon of the stochastic cycle splitting is performed. It is shown that the bifurcation of the stochastic cycle splitting is accompanied by the noise-induced chaotization.