World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Phase Field Modeling of Nonequilibrium Patterns on the Surface of a Liquid Film Under Lateral Oscillations at the Substrate

    https://doi.org/10.1142/S0218127414501107Cited by:8 (Source: Crossref)

    We use a phase field model which couples the generalized Navier–Stokes equation (including the Korteweg stress tensor) with the continuity equation for studying nonlinear pattern formation on the surface of a liquid film under (linear and circular) lateral harmonic vibrations at the solid substrate. First, we prove the thermodynamic consistency of our phase field model. Next, we present computer simulations in three spatial dimensions. We illustrate nonequilibrium patterns at the instability onset, confirming in this way the results recently reported in Phys. Rev. E 88, 023025 (2013). The lateral profiles of the deflected surface are compared with those reported in J. Fluid Mech. 686, 409 (2011) for Faraday instability excited by vertical harmonic vibrations at the bottom plate.