World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Effect of Nonlinear Dissipation on the Basin Boundaries of a Driven Two-Well Modified Rayleigh–Duffing Oscillator

    https://doi.org/10.1142/S0218127415500248Cited by:16 (Source: Crossref)

    This paper considers the effect of nonlinear dissipation on the basin boundaries of a driven two-well modified Rayleigh–Duffing oscillator where pure cubic, unpure cubic, pure quadratic and unpure quadratic nonlinearities are considered. By analyzing the potential, an analytic expression is found for the homoclinic orbit. The Melnikov criterion is used to examine a global homoclinic bifurcation and transition to chaos. Unpure quadratic parameter and parametric excitation amplitude effects are found on the critical Melnikov amplitude μcr. Finally, the phase space of initial conditions is carefully examined in order to analyze the effect of the nonlinear damping, and particularly how the basin boundaries become fractalized.