World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nonlinear Dynamic Behavior of Functionally Graded Truncated Conical Shell Under Complex Loads

    https://doi.org/10.1142/S021812741550025XCited by:27 (Source: Crossref)

    Nonlinear dynamic behaviors of ceramic-metal graded truncated conical shell subjected to complex loads are investigated. The shell is modeled by first-order shear deformation theory. The nonlinear partial differential governing equation in terms of transverse displacements of the FGM truncated conical shell is derived from the Hamilton's principle. Galerkin's method is then utilized to discretize the partial governing equations to a two-degree-of-freedom nonlinear ordinary differential equation. The temperature-dependent materials properties of the constituents are graded in the radial direction in accordance with a power-law distribution. The aerodynamic pressure can be calculated by using the first-order piston theory. The temperature field is assumed to be a steady-state constant-temperature distribution. Bifurcation diagrams, the maximum Lyapunov exponents, wave forms and phase portraits are obtained by numerical simulation to demonstrate the complex nonlinear dynamics response of the FGM truncated conical shell. The influences of the semi-vertex angle, the material gradient index, in-plane and aerodynamic load on the nonlinear dynamics are studied.