World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Delay-Induced Double Hopf Bifurcations in a System of Two Delay-Coupled van der Pol–Duffing Oscillators

    https://doi.org/10.1142/S0218127415500583Cited by:19 (Source: Crossref)

    In this paper, we investigate the codimension-two double Hopf bifurcation in delay-coupled van der Pol–Duffing oscillators. By using normal form theory of delay differential equations, the normal form associated with the codimension-two double Hopf bifurcation is calculated. Choosing appropriate values of the coupling strength and the delay can result in nonresonance and weak resonance double Hopf bifurcations. The dynamical classification near these bifurcation points can be explicitly determined by the corresponding normal form. Periodic, quasi-periodic solutions and torus are found near the bifurcation point. The numerical simulations are employed to support the theoretical results.