ELECTRONIC AND OPTICAL PROPERTIES OF BaO, BaS, BaSe, BaTe AND BaPo COMPOUNDS UNDER HYDROSTATIC PRESSURE
Abstract
We have performed first-principle full-potential (linear) augmented plane wave plus local orbital calculations (FP-L/APW + l0) with density functional theory (DFT) in local density approximation (LDA) and generalized gradient approximation (GGA), with the aim to determine and predict the electronic and optical properties of rocksalt BaO, BaS, BaSe, BaTe and BaPo compounds. First we present the main features of the electronic properties of these compounds, where the electronic band structure shows that the fundamental energy gap is indirect (Γ–X) for all compounds except for BaO which is direct (X–X). The different interband transitions have been determined from the imaginary part of the dielectric function. The real and imaginary parts of the dielectric function and the reflectivity are calculated. We have presented the assignment of the different optical transitions existing in these compounds from the imaginary part of the dielectric function spectra with respect to their correspondence in the electronic band. We have also calculated the pressure and volume dependence of the optical properties for these compounds.