Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress–strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0–1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  • articleNo Access

    ELECTRONIC AND OPTICAL PROPERTIES OF BaO, BaS, BaSe, BaTe AND BaPo COMPOUNDS UNDER HYDROSTATIC PRESSURE

    We have performed first-principle full-potential (linear) augmented plane wave plus local orbital calculations (FP-L/APW + l0) with density functional theory (DFT) in local density approximation (LDA) and generalized gradient approximation (GGA), with the aim to determine and predict the electronic and optical properties of rocksalt BaO, BaS, BaSe, BaTe and BaPo compounds. First we present the main features of the electronic properties of these compounds, where the electronic band structure shows that the fundamental energy gap is indirect (Γ–X) for all compounds except for BaO which is direct (X–X). The different interband transitions have been determined from the imaginary part of the dielectric function. The real and imaginary parts of the dielectric function and the reflectivity are calculated. We have presented the assignment of the different optical transitions existing in these compounds from the imaginary part of the dielectric function spectra with respect to their correspondence in the electronic band. We have also calculated the pressure and volume dependence of the optical properties for these compounds.