Subharmonic Bifurcation for a Nonsmooth Oscillator
Abstract
A nonsmooth pendulum model with multiple impulse effect is constructed to detect the bifurcation of a periodic orbit with multiple jump discontinuous points. Subharmonic Melnikov function of this kind of nonsmooth systems is studied. Differences of subharmonic Melnikov function between the nonsmooth system with multiple jump discontinuities and the smooth system are analyzed by using the Hamiltonian function and piecewise integral method. Applying the recursive method and perturbation principle, the effects of the jump discontinuous points on the subharmonic Melnikov function are converted to integral items which can be easily calculated. Hence, the subharmonic Melnikov function for the subharmonic orbit with multiple jump discontinuous points is obtained. Finally, the existence conditions for periodic motion of the subharmonic orbit are derived and the efficiency of the conclusions is verified via numerical simulations.