World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Subharmonic Bifurcation for a Nonsmooth Oscillator

    https://doi.org/10.1142/S0218127417501632Cited by:14 (Source: Crossref)

    A nonsmooth pendulum model with multiple impulse effect is constructed to detect the bifurcation of a periodic orbit with multiple jump discontinuous points. Subharmonic Melnikov function of this kind of nonsmooth systems is studied. Differences of subharmonic Melnikov function between the nonsmooth system with multiple jump discontinuities and the smooth system are analyzed by using the Hamiltonian function and piecewise integral method. Applying the recursive method and perturbation principle, the effects of the jump discontinuous points on the subharmonic Melnikov function are converted to integral items which can be easily calculated. Hence, the subharmonic Melnikov function for the subharmonic orbit with multiple jump discontinuous points is obtained. Finally, the existence conditions for periodic motion of the subharmonic orbit are derived and the efficiency of the conclusions is verified via numerical simulations.