We study the classification of the pairs (N, X) where N is a Stein surface and X is a ℂ-complete holomorphic vector field with isolated singularities on N. We describe the role of transverse sections in the classification of X and give necessary and sufficient conditions on X in order to have N biholomorphic to ℂ2. As a sample of our results, we prove that N is biholomorphic to ℂ2 if H2(N, ℤ) = 0, X has a finite number of singularities and exhibits a singularity with three separatrices or, equivalently, a singularity with first jet of the form
where λ1/λ2 ∈ ℚ+. We also study flows with many periodic orbits (i.e. orbits diffeomorphic to ℂ*), in a sense we will make clear, proving they admit a meromorphic first integral or they exhibit some special periodic orbit, whose holonomy map is a non-resonant nonlinearizable diffeomorphism map.