Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Exact Traveling Wave Solutions and Bifurcations of the Time-Fractional Differential Equations with Applications

    https://doi.org/10.1142/S021812741950041XCited by:36 (Source: Crossref)

    This paper presents a method to investigate exact traveling wave solutions and bifurcations of the nonlinear time-fractional partial differential equations with the conformable fractional derivative proposed by [Khalil et al., 2014]. The method is based on employing the bifurcation theory of planar dynamical systems proposed by [Li, 2013]. For the fractional PDEs, up till now, there is no related paper to obtain the exact solutions by applying bifurcation theory. We show how to use this method with applications to two fractional PDEs: the fractional Klein–Gordon equation and the fractional generalized Hirota–Satsuma coupled KdV system, respectively. We find the new exact solutions including periodic wave solution, kink wave solution, anti-kink wave solution and solitary wave solution (bright and dark), which are different from previous works in the literature. This approach can also be extended to other nonlinear time-fractional differential equations with the conformable fractional derivative.