World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Exact Traveling Wave Solutions and Bifurcations of Classical and Modified Serre Shallow Water Wave Equations

    https://doi.org/10.1142/S0218127419501530Cited by:2 (Source: Crossref)

    Using the dynamical systems analysis and singular traveling wave theory developed by Li and Chen [2007] to the classical and modified Serre shallow water wave equations, it is shown that, in different regions of the parameter space, all possible bounded solutions (solitary wave solutions, kink wave solutions, peakons, pseudo-peakons and periodic peakons as well as compactons) can be obtained. More than 28 explicit and exact parametric representations are precisely derived. It is demonstrated that, more interestingly, the modified Serre equation has uncountably infinitely many smooth solitary wave solutions and uncountably infinitely many pseudo-peakon solutions. Moreover, it is found that, differing from the well-known peakon solution of the Camassa–Holm equation, the modified Serre equation has four new forms of peakon solutions.

    This research was supported in part by the National Natural Science Foundation of China (11162020 and 11871231).