World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Synergetics and Acoustic Emission Approach for Crazing Nonlinear Dynamical Systems

    https://doi.org/10.1142/S0218127420500431Cited by:1 (Source: Crossref)

    This paper reports that synergetics are used to analyze the crazing evolution. On this basis, chaotic effect is explored. The chaos equation is established and verified. The theoretical derivation are consistent with the experimental results. We design a special specimen with a special loading mode, the transient monitoring function of acoustic emission (AE) technology is used to track and detect the crazing inside the PMMA in real time, and the experiments show that synergetics can explain the crazing properties of polymer. Importantly, the mathematical explanation is also given. The AE analysis, synergetics, and craze photo reached a conclusion that the crazing has chaotic behavior. After analyzing the AE events and crazing at different stress levels, the accuracy of synergetic approach for crazing is verified. By studying the course of AE events and crazing, the self-organization effect is proposed. The research results will provide data support for the application of PMMA in ship, aircraft, and precision instruments.