World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Adaptive Synchronization of Fractional-Order Coupled Neurons Under Electromagnetic Radiation

    https://doi.org/10.1142/S0218127420500443Cited by:16 (Source: Crossref)

    In this paper, we investigate the dynamical characteristics of four-variable fractional-order Hindmarsh–Rose neuronal model under electromagnetic radiation. The numerical results show that the improved model exhibits more complex dynamical behavior with more bifurcation parameters. Meanwhile, based on the fractional-order Lyapunov stability theory, we propose two adaptive control methods with a single controller to realize chaotic synchronization between two coupled neurons. Finally, numerical simulations show the feasibility and effectiveness of the presented method.