Homoclinic Bifurcations and Chaos in the Fishing Principle for the Lorenz-like Systems
Abstract
In this article using an analytical method called Fishing principle we obtain the region of parameters, where the existence of a homoclinic orbit to a zero saddle equilibrium in the Lorenz-like system is proved. For a qualitative description of the different types of homoclinic bifurcations, a numerical analysis of the obtained region of parameters is organized, which leads to the discovery of new bifurcation scenarios.